{ "cells": [ { "cell_type": "markdown", "id": "1ac0b644", "metadata": {}, "source": [ "# Week 8: Exercises" ] }, { "cell_type": "markdown", "id": "50592686", "metadata": {}, "source": [ "## Exercises -- Long Day" ] }, { "cell_type": "markdown", "id": "0a56f147", "metadata": {}, "source": [ "**Note:**\n", "The expression $|\\det{\\pmb{J}_{\\pmb{r}}(\\pmb{u})}|$ is in mathematical literature often referred to as \"the Jacobian\". This phrase is also often used for the Jacobian matrix, though. To avoid confusion, we will at DTU refer to $|\\det{\\pmb{J}_{\\pmb{r}}(\\pmb{u})}|$ as \"the Jacobian function\", although this is not a phrase you will see in literature outside of DTU. Alternatively, we might simply refer to it in full:\n", "\"the absolute value of the determinant of the Jacobian matrix\"." ] }, { "cell_type": "markdown", "id": "f8032e13", "metadata": {}, "source": [ "### 1: Plane Integrals over Rectangles. By Hand" ] }, { "cell_type": "markdown", "id": "bfa4dd3d", "metadata": {}, "source": [ "#### Question a" ] }, { "cell_type": "markdown", "id": "739aeb4c", "metadata": {}, "source": [ "Consider the region $B=\\left\\lbrace (x,y) \\bigm| 0\\leq x\\leq 2 \\wedge -1\\leq y\\leq 0\\right\\rbrace$ in $\\mathbb{R}^2$. Calculate the plane integral \n", "\n", "\\begin{equation*}\n", " \\int_B (x^2y^2+x) \\mathrm{d}\\pmb{x}\n", "\\end{equation*}\n", "\n", "using the formula for double integrals over (axis-parallel) rectangles." ] }, { "cell_type": "markdown", "id": "ec6bb8a5", "metadata": {}, "source": [ "#### Question b" ] }, { "cell_type": "markdown", "id": "b47ad400", "metadata": {}, "source": [ "Let us calculate the plane integral from above one more time, but now in a manner that at first glance may appear more complicated. Use the change-of-variables theorem for integrals over $\\mathbb{R}^2$." ] }, { "cell_type": "markdown", "id": "80e1d148", "metadata": {}, "source": [ "#### Question c" ] }, { "cell_type": "markdown", "id": "a9526cd3", "metadata": {}, "source": [ "Calculate the plane integral \n", "\n", "\\begin{equation*}\n", " \\int_B \\frac{y}{1+xy} \\;\\mathrm{d}\\pmb{x}, \\quad\\text{hvor}\\quad B=\\left\\lbrace (x,y) \\mid 0\\leq x\\leq 1 \\, \\wedge \\, 0\\leq y\\leq 1\\right\\rbrace.\n", "\\end{equation*}" ] }, { "cell_type": "markdown", "id": "86cf0bae", "metadata": {}, "source": [ "### 2: Polar Coordinates. By Hand" ] }, { "cell_type": "markdown", "id": "dbca83e7", "metadata": {}, "source": [ "A function $f:\\mathbb{R}^2 \\to \\mathbb{R}$ is given by\n", "\n", "\\begin{equation*}\n", " f(x,y)=x^2-y^2.\n", "\\end{equation*}\n", "\n", "For a given point $\\pmb{x}=(x,y)$ in the plane, let $r = \\Vert \\pmb{x} \\Vert$ denote the distance from the point to the origin $(0,0)$. Also, let $\\theta$ denote the angle between the $x$-axis and the position vector to the point - for the sign of the angle $\\theta$, we define the positive angular orientation as counterclockwise. A set of points $B$ contains all points that fulfill (in polar coordinates),\n", "\n", "\\begin{equation*}\n", " 0\\leq r \\leq a \\, \\text{ and } \\, -\\frac{\\pi}{4} \\leq \\theta \\leq \\frac{\\pi}{2},\n", "\\end{equation*}\n", "\n", "\n", "\n", "\n", "where $a$ is an arbitrary positive real number." ] }, { "cell_type": "markdown", "id": "2d840afe", "metadata": {}, "source": [ "#### Question a" ] }, { "cell_type": "markdown", "id": "57251697", "metadata": {}, "source": [ "Make a sketch of $B$, and determine the area of $B$, first using integration and then purely from elementary geometric considerations." ] }, { "cell_type": "markdown", "id": "9a42e62f", "metadata": {}, "source": [ "#### Question b" ] }, { "cell_type": "markdown", "id": "96813857", "metadata": {}, "source": [ "Determine the plane integral $\\int_B f(x,y) \\;\\mathrm{d}\\pmb{x}$." ] }, { "cell_type": "markdown", "id": "f6366f74", "metadata": {}, "source": [ "### 3: The Volume of a Parallelotope" ] }, { "cell_type": "markdown", "id": "5d5b5441", "metadata": {}, "source": [ "A parallelotope $P$ in $\\mathbb{R}^n$ \"spanned by\" the vectors $\\pmb{a}_1, \\pmb{a}_2, \\dots, \\pmb{a}_n$ is defined by:\n", "\n", "\\begin{equation*}\n", " P = \\left\\{ \\pmb{y} \\in \\mathbb{R}^n \\mid \\, \\pmb{y} = A\\pmb{x}, \\quad \\text{where } x_i \\in [0,1] \\text{ for }$i=1,2,\\dots, n$ \\right\\},\n", "\\end{equation*}\n", "\n", "where $A = [\\pmb{a}_1 | \\pmb{a}_2 | \\cdots | \\pmb{a}_n]$ is the $n \\times n$ matrix whose $i$'th column is $\\pmb{a}_i$. This set of points can in short-hand notation be written as $P=A([0,1]^n)$. \n", "\n", "It can be shown with tools *solely* from Mathematics 1a (in particular the characterization of the determinant) that the $n$-dimensional volume of $P$ is:\n", "\n", "\\begin{equation*}\n", " \\mathrm{vol}_n(P) = |\\mathrm{det}(A)|.\n", "\\end{equation*}\n", "\n", "(For the interested student, such a proof can be found here https://textbooks.math.gatech.edu/ila/determinants-volumes.html)\n", "\n", "In $\\mathbb{R}^2$, a parallelotope is the well-known pallelogram, and $\\mathrm{vol}_n(P)$ is then the area of $P$, while it in $\\mathbb{R}^3$ becomes a parallelepiped with a volume." ] }, { "cell_type": "markdown", "id": "8735d37d", "metadata": {}, "source": [ "#### Question a" ] }, { "cell_type": "markdown", "id": "042cda7e", "metadata": {}, "source": [ "Show that $\\mathrm{vol}_n(P) = |\\mathrm{det}(A)|$ using the change-of-variables theorem for integrals over $\\mathbb{R}^n$." ] }, { "cell_type": "markdown", "id": "3e8d73c1", "metadata": {}, "source": [ "*In the rest of this exercise we want to investigate the proposition $\\mathrm{vol}_n(P) = |\\mathrm{det}(A)|$ without use of integration techniques.*" ] }, { "cell_type": "markdown", "id": "ded8b241", "metadata": {}, "source": [ "#### Question b" ] }, { "cell_type": "markdown", "id": "7beb785e", "metadata": {}, "source": [ "Let $n=2$. Choose two linearly independent vectors $\\pmb{a}_1, \\pmb{a}_2$ in $\\mathbb{R}^2$. It might be smart to choose $\\pmb{a}_1 \\in \\mathrm{span}(\\pmb{e}_1)$. Calculate (using elementary geometric considerations) the area of the parallelogram \"spanned by\" the two vectors. Also calculate $|\\mathrm{det}(A)|$ and compare the results." ] }, { "cell_type": "markdown", "id": "8df9523e", "metadata": {}, "source": [ "#### Question c" ] }, { "cell_type": "markdown", "id": "2b00e70e", "metadata": {}, "source": [ "Let $n=2$, and now let $\\pmb{a}_1, \\pmb{a}_2$ be arbitrary but linearly independent vectors in $\\mathbb{R}^2$. Can you prove the formula $\\mathrm{area}(P) = |\\mathrm{det}(A)|$, where $P$ is the parallelogram \"spanned by\" the two vectors? You may assume (why?) that $\\pmb{a}_1 \\in \\mathrm{span}(\\pmb{e}_1)$, if this helps in your argumentation." ] }, { "cell_type": "markdown", "id": "ad2f6edb", "metadata": {}, "source": [ "#### Question d" ] }, { "cell_type": "markdown", "id": "e71613a0", "metadata": {}, "source": [ "Let $n=3$. Choose three linearly independent vectors $\\pmb{a}_1, \\pmb{a}_2, \\pmb{a}_3$ in $\\mathbb{R}^3$. It can be smart to choose $\\pmb{a}_1, \\pmb{a}_2 \\in \\mathrm{span}(\\pmb{e}_1, \\pmb{e}_2)$. Calculate (using elementary geometric considerations) the volume of the parallelepiped \"spanned by\" the three vectors. Also calculate $|\\mathrm{det}(A)|$ and compare the two results." ] }, { "cell_type": "markdown", "id": "bc6783f0", "metadata": {}, "source": [ "#### Question e (Extra, can Wait Until After the Exercises of the Day)" ] }, { "cell_type": "markdown", "id": "06eb878c", "metadata": {}, "source": [ "Let $n=3$, and now let $\\pmb{a}_1, \\pmb{a}_2, \\pmb{a}_3$ be arbitrary but linearly independent vectors in $\\mathbb{R}^3$. Can you prove the formula $\\mathrm{areal}(P) = |\\mathrm{det}(A)|$, where $P$ is the parallelepiped \"spanned by\" the three vectors? You may assume (why?) that $\\pmb{a}_1, \\pmb{a}_2 \\in \\mathrm{span}(\\pmb{e}_1, \\pmb{e}_2)$, if that helps your argumentation." ] }, { "cell_type": "markdown", "id": "3996eeb6", "metadata": {}, "source": [ "### 4: Plane Integral with Parametrization I. By Hand" ] }, { "cell_type": "markdown", "id": "6714ed74", "metadata": {}, "source": [ "In the $(x,y)$ plane we are given the point $P_0=(1,2)$ and the set of points \n", "\n", "\\begin{equation*}\n", " C=\\left\\lbrace (x,y)\\Big\\vert \\frac 32\\leq y \\leq \\frac 52 \\wedge 0\\leq x\\leq \\frac 12 y^2\\right\\rbrace.\n", "\\end{equation*}" ] }, { "cell_type": "markdown", "id": "66ebe8da", "metadata": {}, "source": [ "#### Question a" ] }, { "cell_type": "markdown", "id": "663e0591", "metadata": {}, "source": [ "Make a preliminary sketch of $C$ and provide a parameterization $\\pmb{r}(u,v)$ for $C$ with appropriate intervals for $u$ and $v$, i.e., specify $\\Gamma$ such that $\\pmb{r}(\\Gamma) = C$. Justify that the chosen parameterization is injective (if the chosen parameterization is not injective, you must find a new one)." ] }, { "cell_type": "markdown", "id": "3dd868d3", "metadata": {}, "source": [ "#### Question b" ] }, { "cell_type": "markdown", "id": "1a3cf8b2", "metadata": {}, "source": [ "Determine the two parameter values $u_0$ and $v_0$ such that $\\pmb{r}(u_0,v_0)=P_0$.\n", "Make an illustration of $C$ (both a sketch by hand and a plot in Sympy are fine) where you from $P_0$ draw the tangent vectors $\\pmb{r}'_u(u_0,v_0)$ and $\\pmb{r}'_v(u_0,v_0)$. Determine the area of the parallelogram that is spanned by these tangentvectors, see according to Exercise [](exercise:volumen-af-et-parallellotop)." ] }, { "cell_type": "markdown", "id": "525ffeb5", "metadata": {}, "source": [ "#### Question c" ] }, { "cell_type": "markdown", "id": "e216710d", "metadata": {}, "source": [ "Determine the Jacobian determinen that corresponds to $\\pmb{r}(u,v)$, and argue that the two column vectors that constitute the Jacobian matrix are linearly independent for all $(u,v) \\in \\Gamma$. Calculate the Jacobian determinant at the point $(u_0,v_0)$." ] }, { "cell_type": "markdown", "id": "54afafb4", "metadata": {}, "source": [ "#### Question d" ] }, { "cell_type": "markdown", "id": "afe5eedd", "metadata": {}, "source": [ "Calculate the plane integral \n", "\n", "\\begin{equation*}\n", " \\int_C \\frac{1}{y^2+x} \\mathrm{d}\\pmb{x}\n", "\\end{equation*}\n", "\n", "using the change-of-variables theorem for integrals over $\\mathbb{R}^2$. You must argue that changing variables is a usable method for this case. Check your result with the theorem on axis-parallel regions." ] }, { "cell_type": "markdown", "id": "5ef3672b", "metadata": {}, "source": [ "### 5: The Plane Integral with Parametrization II" ] }, { "cell_type": "markdown", "id": "71ffa425", "metadata": {}, "source": [ "We want to determine the plane integral\n", "\n", "\\begin{equation*}\n", " \\int_B 2xy\\,\\mathrm{d} \\pmb{x} \\quad\\text{hvor}\\quad B=\\pmb{r}([0,1]^2),\n", "\\end{equation*}\n", "\n", "given by the parametrization\n", "\n", "\\begin{equation*}\n", " \\pmb{r}(u,v)=(u,v(1-u)),\\;\\text{hvor}\\; u\\in\\left[ 0,1\\right]\\text{ and } v\\in\\left[ 0,1\\right].\n", "\\end{equation*}\n", "\n", "Follow the below steps." ] }, { "cell_type": "markdown", "id": "88c33a85", "metadata": {}, "source": [ "#### Question a" ] }, { "cell_type": "markdown", "id": "233fffbd", "metadata": {}, "source": [ "Describe the region $B$ using inequalities (such as $x+5y\\ge 7$). Then sketch $B$." ] }, { "cell_type": "markdown", "id": "2764986a", "metadata": {}, "source": [ "#### Question b" ] }, { "cell_type": "markdown", "id": "225cae32", "metadata": {}, "source": [ "Determine the Jacobian determinant for the parametrization $\\pmb{r}(u,v)$. Is the Jacobian determinant different from zero on the interior of the parameter domain (this is a requirement for using the change-of-variables theorem)?" ] }, { "cell_type": "markdown", "id": "1b5a4a35", "metadata": {}, "source": [ "#### Question c" ] }, { "cell_type": "markdown", "id": "bef87473", "metadata": {}, "source": [ "Now determine the wanted integral." ] }, { "cell_type": "markdown", "id": "ca579f07", "metadata": {}, "source": [ "### 6: A Triple Integral" ] }, { "cell_type": "markdown", "id": "313d89c5", "metadata": {}, "source": [ "Calculate the triple integral \n", "\n", "\\begin{equation*}\n", " \\displaystyle{\\int_1^2\\int_1^2\\int_1^2 \\frac{xy}{z} \\mathrm dx\\mathrm dy\\mathrm dz.}\\\n", "\\end{equation*}" ] }, { "cell_type": "markdown", "id": "136bcd57", "metadata": {}, "source": [ "### 7: Partial Integration and Integration by Substitution in Two Variables" ] }, { "cell_type": "markdown", "id": "a47fcac0", "metadata": {}, "source": [ "#### Question a" ] }, { "cell_type": "markdown", "id": "699acc9a", "metadata": {}, "source": [ "Determine $\\displaystyle{\\int_0^{\\frac{\\pi}{2}}\\left(\\int_0^{\\frac{\\pi}{2}} u\\cos(u+v)\\mathrm{d}u\\right)\\mathrm{d}v.}$" ] }, { "cell_type": "markdown", "id": "f2c8bba9", "metadata": {}, "source": [ "#### Question b" ] }, { "cell_type": "markdown", "id": "7c6e6854", "metadata": {}, "source": [ "Determine $\\displaystyle{\\int_0^1\\left(\\int_0^1 \\frac{v}{(uv+1)^2}\\mathrm{d}u\\right)\\mathrm{d}v.}$" ] }, { "cell_type": "markdown", "id": "d12abd68", "metadata": {}, "source": [ "----" ] }, { "cell_type": "markdown", "id": "4da688b7", "metadata": {}, "source": [ "## Exercises -- Short Day" ] }, { "cell_type": "markdown", "id": "41077c21", "metadata": {}, "source": [ "### 1: Parametrized Spatial Region. By Hand." ] }, { "cell_type": "markdown", "id": "548d406d", "metadata": {}, "source": [ "A region $B$ in $(x,y,z)$ space is given by the parametric representation \n", "\n", "\\begin{equation*}\n", " \\pmb{r}(u,v,w)=\\big(\\frac{1}{2}u^2-v^2,-uv,w\\big),\\quad u\\in \\left[ 0,2\\right],v\\in \\left[ 0,2\\right],w\\in \\left[ 0,2\\right].\n", "\\end{equation*}" ] }, { "cell_type": "markdown", "id": "4d5f5147", "metadata": {}, "source": [ "#### Question a" ] }, { "cell_type": "markdown", "id": "8cb7f137", "metadata": {}, "source": [ "In $B$ we are given the point \n", "\n", "\\begin{equation*}\n", " \\pmb{x}_0=\\pmb{r}(1,1,1).\n", "\\end{equation*}\n", "\n", "Find $\\pmb{x}_0$. When placed at $\\pmb{x}_0$, the tangent vectors $\\pmb{r}_u'(1,1,1),\\pmb{r}_v'(1,1,1)$ and $\\pmb{r}_w'(1,1,1)$ span a parallelepiped $P$, see Exercise [](exercise:volumen-af-et-parallellotop). Determine the volume of this parallelepiped. It would be good training to illustrate this with Sympy." ] }, { "cell_type": "markdown", "id": "e7a931ec", "metadata": {}, "source": [ "#### Question b" ] }, { "cell_type": "markdown", "id": "9f69caef", "metadata": {}, "source": [ "Determine the absolute value of the Jacobian determinant corresponding to $\\pmb{r}$. Evaluate it at $\\pmb{x}_0$." ] }, { "cell_type": "markdown", "id": "23efa5f7", "metadata": {}, "source": [ "#### Question c" ] }, { "cell_type": "markdown", "id": "e9af05d8", "metadata": {}, "source": [ "Calculate the volume of $B$." ] }, { "cell_type": "markdown", "id": "35d0f591", "metadata": {}, "source": [ "### 2: Mass Distributions in the $(x,y)$ Plane" ] }, { "cell_type": "markdown", "id": "030e179c", "metadata": {}, "source": [ "Consider the sets of points in $\\mathbb{R}^2$ given by:\n", "\n", "\\begin{equation*}\n", " B=\\left\\lbrace (x,y) \\in \\mathbb{R}^2 \\;\\Big\\vert \\; 1\\leq x\\leq 2 \\, \\wedge \\, 0\\leq y\\leq x^3\\right\\rbrace,\n", "\\end{equation*}\n", "\n", "and consider (again)\n", "\n", "\\begin{equation*}\n", " C=\\left\\lbrace (x,y) \\in \\mathbb{R}^2 \\;\\Big\\vert \\; \\frac 32\\leq y \\leq \\frac 52 \\wedge 0\\leq x\\leq \\frac 12 y^2\\right\\rbrace.\n", "\\end{equation*} \n", "\n", "We will think of $f(x,y)$ as a function that expresses the mass density at the point $(x,y)$ (so, with units such as $\\mathrm{kg/m^2}$)." ] }, { "cell_type": "markdown", "id": "3d52912a", "metadata": {}, "source": [ "#### Question a" ] }, { "cell_type": "markdown", "id": "23c69b1c", "metadata": {}, "source": [ "Assume that the mass density is constant, $f(x,y)=1$ for $(x,y)\\in B$. Determine the mass and centre of mass of $B$." ] }, { "cell_type": "markdown", "id": "a5248599", "metadata": {}, "source": [ "#### Question b" ] }, { "cell_type": "markdown", "id": "b04910ef", "metadata": {}, "source": [ "Assume that the mass density is $f(x,y)=x^2$ for $(x,y)\\in B$. Determine the mass and the centre of mass of $B$." ] }, { "cell_type": "markdown", "id": "8163ac99", "metadata": {}, "source": [ "#### Question c" ] }, { "cell_type": "markdown", "id": "662d6fcd", "metadata": {}, "source": [ "Assume that the mass density is constant $f(x,y)=1$ for $(x,y)\\in C$. Determine the mass and the centre of mass of $C$." ] }, { "cell_type": "markdown", "id": "87d699b8", "metadata": {}, "source": [ "#### Question d" ] }, { "cell_type": "markdown", "id": "7fbc32b8", "metadata": {}, "source": [ "Assume that the mass density is $f(x,y)=x^2$ for $(x,y)\\in C$. Determine the mass and the centre of mass of $C$." ] }, { "cell_type": "markdown", "id": "b2d61ab4", "metadata": {}, "source": [ "### 3: Spherical Regions in 3D Space" ] }, { "cell_type": "markdown", "id": "c2a6a9e2", "metadata": {}, "source": [ "Consider the spatial region $\\pmb{r}(\\Gamma)$ given by \n", "\n", "\\begin{equation*}\n", " \\pmb{r}(u,v,w)=\\big(u\\sin(v)\\cos(w),u\\sin(v)\\sin(w),u\\cos(v)\\big), \\quad (u,v,w) \\in \\Gamma, \n", "\\end{equation*}\n", "\n", "where $\\Gamma = [a,b] \\times [c,d] \\times [e,f] \\subset [0, \\infty[ \\times [0,\\pi] \\times [0,2\\pi]$. Meaning, we are dealing with the following parameter values:\n", "$u\\in [a,b],v\\in [c,d],w\\in [e,f]$." ] }, { "cell_type": "markdown", "id": "20d5212a", "metadata": {}, "source": [ "#### Question a" ] }, { "cell_type": "markdown", "id": "e69d6556", "metadata": {}, "source": [ "What do the parameters represent?" ] }, { "cell_type": "markdown", "id": "98053f08", "metadata": {}, "source": [ "#### Question b\n", "\n", "Let $A$ be the region that is determined by the choice: \n", "\n", "\\begin{equation*}\n", " a=1,b=3,c=\\frac{\\pi}{4},d=\\frac{\\pi}{3},e=0,f=\\frac{3\\pi}{4},\n", "\\end{equation*}\n", "\n", "and let $B$ be the region determined by the choice: \n", "\n", "\\begin{equation*}\n", " a=2,b=4,c=\\frac{\\pi}{4},d=\\frac{\\pi}{2},e=-\\frac{\\pi}{4},f=\\frac{\\pi}{4}.\n", "\\end{equation*}" ] }, { "cell_type": "markdown", "id": "24af2dcd", "metadata": {}, "source": [ "Describe in words each of the regions $A$, $B$ and $A\\cap B$, and calculate their volumes." ] }, { "cell_type": "markdown", "id": "a6bf3f81", "metadata": {}, "source": [ "#### Question c" ] }, { "cell_type": "markdown", "id": "0dd55f06", "metadata": {}, "source": [ "Let $\\symbols x=(x_1,x_2,x_3)$. Calculate all of the integrals \n", "\n", "\\begin{equation*}\n", " \\int_A x_1 \\, \\mathrm{d}\\pmb{x}, \\quad \\int_Bx_1 \\, \\mathrm{d}\\pmb{x} \\quad \\text{og} \\quad \\int_{A\\cap B}x_1 \\, \\mathrm{d}\\pmb{x}.\n", "\\end{equation*}" ] }, { "cell_type": "markdown", "id": "5156e435", "metadata": {}, "source": [ "### 4: An Indefinite Integral in the Plane\n", "\n", "Let $B$ be the unit square $[0,1]^2$. We will investigate the indefinite plane integral: \n", "\n", "\\begin{equation*}\n", " I := \\int_B \\frac{1}{x_2-x_1-1} \\mathrm{d}\\pmb{x}.\n", "\\end{equation*}\n", "\n", "The integrand $f(x_1,x_2)=\\frac{1}{x_2-x_1-1}$ is not Riemann integrable over $B$, since $f$ is not defined at the point $(x_1,x_2)=(0,1)$. We wish to find out whether it is still possible to give the integral a value by considering limits." ] }, { "cell_type": "markdown", "id": "36cd77ee", "metadata": {}, "source": [ "#### Question a" ] }, { "cell_type": "markdown", "id": "1c34ce35", "metadata": {}, "source": [ "Find those points in the $(x,y)$ plane where $f(x_1,x_2)$ is not defined. Find the range of $f$ as a function on $B \\setminus \\{(0,1)\\}$." ] }, { "cell_type": "markdown", "id": "88001983", "metadata": {}, "source": [ "#### Question b" ] }, { "cell_type": "markdown", "id": "40200da8", "metadata": {}, "source": [ "Let $B_a = [a,1] \\times [0,1]$ for a fixed $a \\in [0,1]$. Make a sketch of $B_a$ and create a parametrization of $B_a$. Determine the Jacobian determinant of the parametrization." ] }, { "cell_type": "markdown", "id": "bf399ebb", "metadata": {}, "source": [ "#### Question c" ] }, { "cell_type": "markdown", "id": "458b6aed", "metadata": {}, "source": [ "Calculate the Riemann integral \n", "\n", "\\begin{equation*}\n", " I_a := \\int_{B_a} \\frac{1}{x_2-x_1-1} \\mathrm{d}\\pmb{x} \n", "\\end{equation*}\n", "\n", "for every $a \\in ]0,1]$." ] }, { "cell_type": "markdown", "id": "c36a1b90", "metadata": {}, "source": [ "#### Question d" ] }, { "cell_type": "markdown", "id": "6f9a9004", "metadata": {}, "source": [ "Calculate the limit of $I_a$ for $a \\to 0$. \n", "\n", "\n", "\n", "#### Question e\n", "\n", "Let $B_b = [0,1] \\times [0,b]$. Define $I_b := \\int_{B_b} \\frac{1}{x_2-x_1-1} \\mathrm{d}\\pmb{x} $. Find $\\lim_{b \\to 1} I_b$. Compare with the above." ] } ], "metadata": { "jupytext": { "formats": "md:myst" }, "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" } }, "nbformat": 4, "nbformat_minor": 5 }