
trial-exam-f24

May 14, 2024

1 Written (Trial) Exam for 01002/01004 Mathematics 1b, Sug-
gested Solutions

By shsp@dtu.dk, 05/05-2024

[3]: from sympy import *
from dtumathtools import *

init_printing()

1.1 Exercise 1
We are given the two partial derivatives, so the following gradient, of a function 𝑓 ∶ ℝ2 → ℝ:

[4]: x, y = symbols("x y")
fx = 6 * x - 6 * y
fy = 6 * y**2 - 6 * x
fx, fy

[4]: (6𝑥 − 6𝑦, −6𝑥 + 6𝑦2)

1.1.1 (a)

Setting them equal to zero and solving for all solutions results in all stationary points:

[5]: statpt = solve([Eq(fx, 0), Eq(fy, 0)])
statpt

[5]: [{𝑥 ∶ 0, 𝑦 ∶ 0} , {𝑥 ∶ 1, 𝑦 ∶ 1}]
So, 𝑓 has the two stationary points, (0, 0) and (1, 1).

1.1.2 (b)

Second-order partial derivatives:

[6]: fxx = diff(fx, x)
fxy = diff(fx, y)
fyx = diff(fy, x)
fyy = diff(fy, y)

1



fxx, fxy, fyx, fyy

[6]: (6, −6, −6, 12𝑦)
We see that the two partial mixed double derivatives are equal. Since 𝑓 also is defined on all of ℝ2,
then 𝑓 is two-time differentiable (smooth).

The Hessian matrix 𝐻𝑓(𝑥, 𝑦):

[7]: H = Lambda(tuple([x, y]), Matrix([[fxx, fxy], [fyx, fyy]]))
H(x, y)

[7]:
[ 6 −6
−6 12𝑦]

With no boundary given, extrema can only be found at stationary points or execptional points.
Since 𝑓 is smooth and defined on all of ℝ2, there are no exceptional points. So, we investigate the
eigenvalues of the Hessian matrix at the stationary points:

[8]: H(0, 0).eigenvals()

[8]: {3 − 3
√

5 ∶ 1, 3 + 3
√

5 ∶ 1}
The eigenvalues have different signs, so according to Theorem 5.2.4, (0, 0) is a saddel point.

[9]: lambdas = H(1, 1).eigenvals(multiple=True)
lambdas[0].evalf(), lambdas[1].evalf()

[9]: (2.29179606750063, 15.7082039324994)
The eigenvalues are both positive, indicating a local minimum at (1, 1).
There are no more possible extremum points, so 𝑓 has no maximum.

1.1.3 (c)

We are now informed that 𝑓(0, 0) = 1. For the 2nd-degree Taylor approximating expanded from
𝑥0 = (0, 0), we need the 1st-order and 2nd-order partial derivatives evaluated at (0, 0):

𝜕𝑓(0, 0)
𝜕𝑥 = 0, 𝜕𝑓(0, 0)

𝜕𝑦 = 0, 𝜕2𝑓(0, 0)
𝜕𝑥2 = 6, 𝜕2𝑓(0, 0)

𝜕𝑦2 = 0, 𝜕2𝑓(0, 0)
𝜕𝑥𝜕𝑦 = 𝜕2𝑓(0, 0)

𝜕𝑦𝜕𝑥 = −6

Setting up the approximation:

𝑃2(𝑥, 𝑦) = 𝑓(0, 0)+𝜕𝑓(0, 0)
𝜕𝑥 (𝑥−0)+𝜕𝑓(0, 0)

𝜕𝑦 (𝑦−0)+1
2

𝜕2𝑓(0, 0)
𝜕𝑥2 (𝑥−0)2+1

2
𝜕2𝑓(0, 0)

𝜕𝑦2 (𝑥−0)2+𝜕2𝑓(0, 0)
𝜕𝑥𝜕𝑦 (𝑥−0)(𝑦−0)

= 1 + 0 + 0 + 1
26𝑥2 + 0 − 6𝑥𝑦

= 3𝑥2 − 6𝑥𝑦 + 1

2



1.2 Exercise 2
A function 𝑓 ∶ ℝ → ℝ is given by 𝑓(0) = 1 and 𝑓(𝑥) = sin(𝑥)/𝑥 when 𝑥 ≠ 0.

1.2.1 (a)

3rd-degree Taylor polynomial of sin(𝑥) expanded from 𝑥0 = 0:

[10]: sin(x).series(x, 0, 4)

[10]:
𝑥 − 𝑥3

6 + 𝑂 (𝑥4)

So, the Taylor polynomial of degree 3 is 𝑃3(𝑥) = 𝑥 − 𝑥3
6 .

[11]: P3 = x - x**3 / 6
P3, sin(x).series(x, 0, 4).removeO()

[11]:
(−𝑥3

6 + 𝑥, −𝑥3

6 + 𝑥)

1.2.2 (b)

The Taylor expansion (Taylor’s limit formula) of sin(𝑥) is:

sin(𝑥) = 𝑥 − 𝑥3

6 + 𝜀(𝑥)𝑥3

where 𝜀(𝑥) is an epsilon function.

We find the following limit value:

lim
𝑥→0

sin(𝑥)
𝑥 = lim

𝑥→0
𝑥 − 𝑥3

6 + 𝜀(𝑥)𝑥3

𝑥 = lim
𝑥→0

(1 − 𝑥2

6 + 𝜀(𝑥)𝑥2) = 1.

1.2.3 (c)

According to remark to theorem 3.1.1 in the note, 𝑓 is continuous in all points in the interval ℝ {0}.
In (b) we showed that sin(𝑥)/𝑥 converges towards 1 for 𝑥 → 0. By the given definition, 𝑓(0) = 1,
and thus 𝑓(𝑥) → 𝑓(0) for 𝑥 → 0, so f is also continuous in 𝑥 = 0.

1.2.4 (d)

Defining the function for ]0, 1] ∶

[12]: def f(x):
return sin(x) / x

f(x)

[12]:

3



sin (𝑥)
𝑥

Computing a decimal approximation of ∫1
0 𝑓(𝑥) d𝑥 using SymPy:

[13]: integrate(f(x), (x, 0, 1)).evalf()

[13]: 0.946083070367183

1.2.5 (e)

We will compute a Riemann sum as an approximation of the area under the graph of 𝑓 by subdi-
viding the interval [0, 1] into 𝐽 = 30 subintervals with equal widths of Δ𝑥𝑗 = 1/30 and finding the
right-sum. For such a sum, 𝑥𝑗 = 𝑗/𝐽 for 𝑗 = 1, … , 𝐽 :

[14]: j = symbols("j")

delta_xj = 1 / 30
J = 30
xj = j / J

Sum(f(xj) * delta_xj, (j, 1, 30)).evalf()

[14]: 0.943413033821518
Alternatively, using at for loop:

[15]: riemann_sum = 0
N = 30
for i in range(1, N + 1):

riemann_sum += sin(i / N) / (i / N) * 1 / N

riemann_sum

[15]: 0.943413033821518

1.2.6 (f)

Computing ∫1
0 𝑃3(𝑥) d𝑥:

[16]: integrate(P3, (x, 0, 1)).evalf()

[16]: 0.458333333333333
This approximation of the integral is worse than the approximation using a Riemann sum in the
previous question, since a Taylor polynomial of sin(𝑥) does not approximate 𝑓 very well. However,
it would have been sensible to use:

[17]: integrate(P3 / x, (x, 0, 1)).evalf()

[17]: 0.944444444444444

4



1.3 Exercise 3
Given matrix 𝐶𝑡 where 𝑡 ∈ ℝ:

[18]: t = symbols("t")
Ct = Matrix([[1, 2, 3, 4], [4, 1, 2, 3], [3, 4, 1, 2], [t, 3, 4, 1]])
Ct

[18]:
⎡
⎢⎢
⎣

1 2 3 4
4 1 2 3
3 4 1 2
𝑡 3 4 1

⎤
⎥⎥
⎦

1.3.1 (a)

The unitary matrix 𝐶∗
𝑡 is the transposed and conjugated matrix. Since 𝑡 ∈ ℝ, there are no non-real

numbers involved, and the conjugation can be ignored. The unitary matrix is thus the transposed
matrix, 𝐶∗

𝑡 = 𝐶𝑇
𝑡 :

[19]: Ct_uni = Ct.T
Ct_uni

[19]:
⎡
⎢⎢
⎣

1 4 3 𝑡
2 1 4 3
3 2 1 4
4 3 2 1

⎤
⎥⎥
⎦

𝐶𝑡 is a normal matrix if 𝐶𝑡𝐶∗
𝑡 = 𝐶∗

𝑡 𝐶𝑡, so if 𝐶𝑡𝐶𝑇
𝑡 = 𝐶𝑇

𝑡 𝐶𝑡, which is solved for 𝑡:

[20]: Ct_uni * Ct

[20]:
⎡
⎢⎢
⎣

𝑡2 + 26 3𝑡 + 18 4𝑡 + 14 𝑡 + 22
3𝑡 + 18 30 24 22
4𝑡 + 14 24 30 24
𝑡 + 22 22 24 30

⎤
⎥⎥
⎦

[21]: Ct * Ct_uni

[21]:
⎡
⎢⎢
⎣

30 24 22 𝑡 + 22
24 30 24 4𝑡 + 14
22 24 30 3𝑡 + 18

𝑡 + 22 4𝑡 + 14 3𝑡 + 18 𝑡2 + 26

⎤
⎥⎥
⎦

[22]: solve(Eq(Ct * Ct_uni, Ct_uni * Ct))

[22]: [{𝑡 ∶ 2}]
So, only for 𝑡 = 2 is 𝐶𝑡 normal.

1.3.2 (b) and (c)

Defining 𝐴 = 𝐶2:

5



[23]: A = Ct.subs(t, 2)
A

[23]:
⎡
⎢⎢
⎣

1 2 3 4
4 1 2 3
3 4 1 2
2 3 4 1

⎤
⎥⎥
⎦

Given eigenvectors:

[24]: v1 = Matrix([1, 1, 1, 1])
v2 = Matrix([1, I, -1, -I])

Treating 𝐴 as a mapping matrix and mapping the eigenvectors:

[25]: A * v1, A * v2

[25]:
⎛⎜⎜⎜⎜
⎝

⎡
⎢⎢
⎣

10
10
10
10

⎤
⎥⎥
⎦

,
⎡
⎢⎢
⎣

−2 − 2𝑖
2 − 2𝑖
2 + 2𝑖

−2 + 2𝑖

⎤
⎥⎥
⎦

⎞⎟⎟⎟⎟
⎠

From this we read the scaling factors, which are the eigenvalues corresponding to the given eigen-
vectors, to be 𝜆1 = 10 and 𝜆2 = −2 − 2𝑖:

[26]: lambda1 = 10
lambda2 = -2 - 2 * I

Check:

[27]: A * v1 == lambda1 * v1, A * v2 == simplify(lambda2 * v2)

[27]: (True, True)

1.3.3 (d)

Orthogonality is equivalent to an inner product of zero. The inner product of two complex vectors
from ℂ4 is a dot product with one vector complex conjugated, ⟨𝑣1, 𝑣2⟩ = 𝑣1 ⋅ 𝑣2:

[28]: v1.dot(v2.conjugate())

[28]: 0
We conclude that they are orthogonal, 𝑣1 ⟂ 𝑣2.

1.3.4 (e)

The norm is the root of the inner product of a vector with itself, e.g. ||𝑣1|| = √< 𝑣1, 𝑣1 >. Since
𝑣1 ∈ ℝ4 we can use the usual dot product without conjugation as the inner product for that one.
We compute the norms of both eigenvectors:

6



[29]: sqrt(v1.dot(v1))

[29]: 2
[30]: sqrt(v2.dot(v2.conjugate()))

[30]: 2
As their norms are not 1, they are not normalized. The list 𝑣1, 𝑣2 is hence orthogonal but not
orthonormal.

1.4 Exercise 4
Given quadratic form 𝑞 ∶ ℝ2 → ℝ:

[31]: def q(x1, x2):
return 2 * x1**2 - 2 * x1 * x2 + 2 * x2**2 - 4 * x1 + 2 * x2 + 2

x1, x2 = symbols("x1,x2")
q(x1, x2)

[31]: 2𝑥2
1 − 2𝑥1𝑥2 − 4𝑥1 + 2𝑥2

2 + 2𝑥2 + 2

1.4.1 (a)

For rewriting to matrix form 𝑞(𝑥1, 𝑥2) = 𝑥𝑇 𝐴𝑥 + 𝑥𝑇 𝑏 + 𝑐, then 𝐴, 𝑏 and 𝑐 can be as follows:

[32]: A = Matrix([[2, -1], [-1, 2]])
b = Matrix([-4, 2])
c = 2
A, b, c

[32]:
([ 2 −1

−1 2 ] , [−4
2 ] , 2)

Checking:

[33]: x = Matrix([x1, x2])

simplify(list(x.T * A * x + x.T * b)[0] + c)

[33]: 2𝑥2
1 − 2𝑥1𝑥2 − 4𝑥1 + 2𝑥2

2 + 2𝑥2 + 2

[34]: simplify(list(x.T * A * x + x.T * b)[0] + c) == q(x1, x2)

[34]: True

7



1.4.2 (b)

We will now reduce the quadratic form 𝑞 to new form called 𝑞1 without “mixed double terms” by
changing the basis using an orthogonal change-of-basis matrix 𝑄 that changes from new to original
coordinates, meaning ̃𝑥 = 𝑄𝑇 𝑥. Such 𝑄 consists of orthonormalized eigenvectors of 𝐴 as columns.

[35]: A.eigenvects()

[35]:
[(1, 1, [[1

1]]) , (3, 1, [[−1
1 ]])]

𝐴 has the two linearly independent eigenvectors:

[36]: v1 = Matrix([1, 1])
v2 = Matrix([-1, 1])
v1, v2

[36]:
([1

1] , [−1
1 ])

Also, 𝐴 has a corresponding eigenvalue to each eigenvector:

[37]: lambda1 = 1
lambda2 = 3
lambda1, lambda2

[37]: (1, 3)
Since 𝐴 is symmetric, then 𝑣1 and 𝑣2 are orthogonal, according to Theorem xx. We normalize
them:

[38]: q1 = v1.normalized()
q2 = v2.normalized()
q1, q2

[38]:
([

√
2

2√
2

2
] , [−

√
2

2√
2

2
])

A change-of-basis matrix 𝑄 is then:

[39]: Q = Matrix.hstack(q1, q2)
Q

[39]:
[

√
2

2 −
√

2
2√

2
2

√
2

2
]

This can also be found directly by

[40]: Qmat, Lamda = A.diagonalize(normalize=True)
Qmat

[40]:

8



[
√

2
2 −

√
2

2√
2

2
√

2
2

]

1.4.3 (c)

The new coordinates ̃𝑥 are in code denoted by 𝑘:

[41]: k1, k2 = symbols("k1 k2")
k = Matrix([k1, k2])
k

[41]:
[𝑘1
𝑘2

]

In the new coordinates, the squared terms have coefficients equal to the eigenvalues of 𝐴 that
correspond to the eigenvectors in 𝑄, which were found above, in the same order. We set up the
new form 𝑞1 in the new coordinates, where the original linear terms from 𝑥𝑇 𝑏 are changed to the
new basis by performing ̃𝑥𝑇 𝑄𝑇 𝑏:

[42]: q1 = lambda1 * k1**2 + lambda2 * k2**2 + list(k.T * Q.T * b)[0] + c
q1

[42]: 𝑘2
1 −

√
2𝑘1 + 3𝑘2

2 + 3
√

2𝑘2 + 2
Check:

[43]: simplify(list(k.T * Q.T * A * Q * k + k.T * Q.T * b)[0] + c)

[43]: 𝑘2
1 −

√
2𝑘1 + 3𝑘2

2 + 3
√

2𝑘2 + 2
Factorizing by completing the square gives us the following suggestions to the constants:

[44]: alpha = 1
gamma = sqrt(2) / 2
beta = 3
delta = -sqrt(2) / 2
alpha, gamma, beta, delta

[44]:
(1,

√
2

2 , 3, −
√

2
2 )

Setting up the suggested factorized form of 𝑞1 to see if it fits:

[45]: q1_fact = (
alpha * (k1 - gamma) ** 2
- alpha * gamma**2
+ beta * (k2 - delta) ** 2
- beta * delta**2
+ 2

)
q1_fact

9



[45]:
(𝑘1 −

√
2

2 )
2

+ 3 (𝑘2 +
√

2
2 )

2

[46]: expand(q1_fact)

[46]: 𝑘2
1 −

√
2𝑘1 + 3𝑘2

2 + 3
√

2𝑘2 + 2

[47]: expand(q1_fact) == q1

[47]: True

We see that the above listed four constants give us the wanted factorized form from the problem
text, which is a correct factorization of 𝑞1.

1.4.4 (d)

We are informed that 𝑞1 in the new coordinates has a stationary point at (𝛾, 𝛿) with the values of
the constants found in (c):

[48]: k_statpt = Matrix([gamma, delta])
k_statpt

[48]:
[

√
2

2
−

√
2

2
]

The point written in the original coordinates:

[49]: x_statpt = Q * k_statpt
x_statpt

[49]:
[1
0]

The Hessian matrix of 𝑞 is by definition 𝐻𝑞 = 2𝐴. Since the eigenvalues of 𝐴 are positive at
all points, then the eigenvalues of 𝐻𝑞 are also positive at all points. Thus, also positive at any
stationary points. According to Theorem 5.2.4, if the point (1, 0) is a stationary point, then two
positive eigenvalues indicate that it is a local minimum.

1.5 Exercise 5
Given parametrization of a solid region, for 𝑢 ∈ [0, 1], 𝑣 ∈ [0, 1], 𝑤 ∈ [0, 𝜋/2]:

[50]: def r(u, v, w):
return Matrix([v * u**2 * cos(w), v * u**2 * sin(w), u])

u, v, w = symbols("u v w")
r(u, v, w)

[50]:

10



⎡⎢
⎣

𝑢2𝑣 cos (𝑤)
𝑢2𝑣 sin (𝑤)

𝑢
⎤⎥
⎦

We note that 𝑟 is injective within the interior of the given parameter intervals.

1.5.1 (a)

Plotting the region:

[86]: from sympy.plotting import *

pa = dtuplot.plot3d_parametric_surface(
*r(u, v, w).subs(v, 1), (u, 0, 1), (w, 0, pi / 2), show=False

)
pb = dtuplot.plot3d_parametric_surface(

*r(u, v, w).subs(w, pi / 2), (u, 0, 1), (v, 0, 1), show=False
)
pc = dtuplot.plot3d_parametric_surface(

*r(u, v, w).subs(w, 0), (u, 0, 1), (v, 0, 1), show=False
)
pd = dtuplot.plot3d_parametric_surface(

*r(u, v, w).subs(u, 1),
(v, 0, 1),
(w, 0, pi / 2),
{"color": "royalblue", "alpha": 0.7},
show=False

)
(pa + pb + pc + pd).show()

11



The Jacobian matrix:

[51]: Jac_mat = Matrix.hstack(diff(r(u, v, w), u), diff(
r(u, v, w), v), diff(r(u, v, w), w))

Jac_mat

[51]:
⎡⎢
⎣

2𝑢𝑣 cos (𝑤) 𝑢2 cos (𝑤) −𝑢2𝑣 sin (𝑤)
2𝑢𝑣 sin (𝑤) 𝑢2 sin (𝑤) 𝑢2𝑣 cos (𝑤)

1 0 0
⎤⎥
⎦

The Jacobian determinant:

[52]: Jac_det = simplify(Jac_mat.det())
Jac_det

[52]: 𝑢4𝑣

1.5.2 (b)

Given vector field:

[53]: x, y, z = symbols("x y z")
V = Matrix([x + exp(y * z), 2 * y - exp(x * z), 3 * z + exp(x * y)])
V

[53]:

12



⎡⎢
⎣

𝑥 + 𝑒𝑦𝑧

2𝑦 − 𝑒𝑥𝑧

3𝑧 + 𝑒𝑥𝑦
⎤⎥
⎦

Given function:

[54]: f = Lambda(tuple((x, y, z)), diff(V[0], x) + diff(V[1], y) + diff(V[2], z))
f(x, y, z)

[54]: 6

1.5.3 (c)

We see above that 𝑓 is a constant and thus continuous function. A continuous function satisfying
the conditions (I) and (II) on page 140,are guaranteed to be Riemann integrable, according to the
remark after definition 6.3.1.

1.5.4 (d)

Since 𝑟 is injective and since the Jacobian determinant is non-zero within the interior of the param-
eter intervals, then we can compute the volume integral of 𝑓 over the solid region by integrating
along the axis-parallel 𝑢, 𝑣, 𝑤 region and adjusted by the Jacobian function, which is the absolute
value of the Jacobian determinant in this case:

[55]: integrate(f(*r(u, v, w)) * abs(Jac_det), (u, 0, 1), (v, 0, 1), (w, 0, pi / 2))

[55]: 3𝜋
10

1.6 Exercise 6
Given elevated surface: 𝐺 = {(𝑥, 𝑦, ℎ(𝑥, 𝑦))|0 ≤ 𝑥 ≤ 2, 0 ≤ 𝑦 ≤ 1}, where ℎ is given as:

[56]: def h(x, y):
return 2 * x - y + 1

x, y = symbols("x y")
h(x, y)

[56]: 2𝑥 − 𝑦 + 1

1.6.1 (a)

Parametrisation of 𝐺:

[59]: r = Lambda(tuple((u, v)), Matrix([u, v, h(u, v)]))

u, v = symbols("u v")
r(u, v)

[59]:

13



⎡⎢
⎣

𝑢
𝑣

2𝑢 − 𝑣 + 1
⎤⎥
⎦

wich parameter intervals 𝑢 ∈ [0, 2], 𝑣 ∈ [0, 1]. This parametrization is injective in the interior. Plot:

[62]: plot3d_parametric_surface(*r(u, v), (u, 0, 2), (v, 0, 1))

[62]: <sympy.plotting.plot.Plot at 0x1ade1d2a1e0>

Normal vector to the surface:

[63]: N = diff(r(u, v), u).cross(diff(r(u, v), v))
N

[63]:
⎡⎢
⎣

−2
1
1

⎤⎥
⎦

The Jacobian function in case of surface integrals is the length (norm) of the normal vector:

14



[64]: Jac = N.norm()
Jac

[64]: √
6

The area of 𝐺 is found as a surface integral of the scalar 1 over the surface. Since 𝑟 is injective and
the Jacobian function is non-zero on the interior, then we will carry out the surface integral along
𝑢 and 𝑣 and adjust by the Jacobian:

[65]: integrate(Jac, (u, 0, 2), (v, 0, 1))

[65]: 2
√

6

1.6.2 (b)

The region is now cut in two by a vertical plane through the points (0, 1) and (2, 0). This cuts
the region in the (𝑥, 𝑦) plane into two triangles, of which we denote the “lower” triangle by Γ1.
Parametrized, where 𝑢 ∈ [0, 2], 𝑣 ∈ [0, 1]:

[66]: s = Matrix([u, (1 - u/2) * v])
s

[66]:
[ 𝑢
𝑣 (1 − 𝑢

2 )]

The elevated surface above Γ1 is denoted 𝐺1. A parametrization of 𝐺1, where 𝑢 ∈ [0, 2], 𝑣 ∈ [0, 1]:

[67]: r1 = Lambda(tuple((u, v)), Matrix([*s, h(*s)]))
r1(u, v)

[67]:
⎡⎢
⎣

𝑢
𝑣 (1 − 𝑢

2 )
2𝑢 − 𝑣 (1 − 𝑢

2 ) + 1
⎤⎥
⎦

Plot:

[68]: plot3d_parametric_surface(*r1(u, v), (u, 0, 2), (v, 0, 1))

15



[68]: <sympy.plotting.plot.Plot at 0x1ade4632570>

Normal vector:

[69]: N1 = simplify(diff(r1(u, v), u).cross(diff(r1(u, v), v)))
N1

[69]:
⎡⎢
⎣

𝑢 − 2
1 − 𝑢

2
1 − 𝑢

2

⎤⎥
⎦

The Jacobian function:

[70]: simplify(N1.norm())

[70]: √
6 |𝑢 − 2|

2
Since 𝑢 ≤ 2, we simplify to:

[71]: Jac1 = -sqrt(6) * (u - 2)/2
Jac1

16



[71]:
−

√
6 (𝑢 − 2)

2

1.6.3 (c)

Given function

[72]: def f(x, y, z):
return x + y + z - 1

f(x, y, z)

[72]: 𝑥 + 𝑦 + 𝑧 − 1
Surface integral of 𝑓 over 𝐺1 is performed over the parameter region since 𝑟1 is injective and the
Jacobian function non-zero on the interior of Γ1:

[73]: integrate(f(*r1(u, v)) * Jac1, (u, 0, 2), (v, 0, 1))

[73]: 2
√

6

17


	Written (Trial) Exam for 01002/01004 Mathematics 1b, Suggested Solutions
	Exercise 1
	(a)
	(b)
	(c)

	Exercise 2
	(a)
	(b)
	(c)
	(d)
	(e)
	(f)

	Exercise 3
	(a)
	(b) and (c)
	(d)
	(e)

	Exercise 4
	(a)
	(b)
	(c)
	(d)

	Exercise 5
	(a)
	(b)
	(c)
	(d)

	Exercise 6
	(a)
	(b)
	(c)



