trial-exam-f24

May 14, 2024

1 Written (Trial) Exam for 01002/01004 Mathematics 1b, Suggested Solutions

By shsp@dtu.dk, 05/05-2024
[3] :

```
from sympy import *
from dtumathtools import *
init_printing()
```


1.1 Exercise 1

We are given the two partial derivatives, so the following gradient, of a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$:
[4]:

```
x, y = symbols("x y")
fx = 6 * x - 6 * y
fy = 6 * y**2 - 6 * x
fx, fy
```

[4]:
$\left(6 x-6 y,-6 x+6 y^{2}\right)$

1.1.1 (a)

Setting them equal to zero and solving for all solutions results in all stationary points:
[5]: statpt $=$ solve([Eq(fx, 0), Eq(fy, 0)])
statpt
[5]:
$[\{x: 0, y: 0\},\{x: 1, y: 1\}]$
So, f has the two stationary points, $(0,0)$ and $(1,1)$.

1.1.2 (b)

Second-order partial derivatives:
[6]:

```
fxx = diff(fx, x)
fxy = diff(fx, y)
fyx = diff(fy, x)
fyy = diff(fy, y)
```

fxx, fxy, fyx, fyy
[6]:
$(6,-6,-6,12 y)$
We see that the two partial mixed double derivatives are equal. Since f also is defined on all of \mathbb{R}^{2}, then f is two-time differentiable (smooth).

The Hessian matrix $H_{f}(x, y)$:
[7]: H = Lambda(tuple([x, y]), Matrix([[fxx, fxy], [fyx, fyy]]))
H(x, y)
[7]:
$\left[\begin{array}{cc}6 & -6 \\ -6 & 12 y\end{array}\right]$
With no boundary given, extrema can only be found at stationary points or execptional points. Since f is smooth and defined on all of \mathbb{R}^{2}, there are no exceptional points. So, we investigate the eigenvalues of the Hessian matrix at the stationary points:
[8]:
H(0, 0).eigenvals()
[8] :
$\{3-3 \sqrt{5}: 1,3+3 \sqrt{5}: 1\}$
The eigenvalues have different signs, so according to Theorem 5.2.4, $(0,0)$ is a saddel point.
[9]:

```
lambdas = H(1, 1).eigenvals(multiple=True)
lambdas[0].evalf(), lambdas[1].evalf()
```

[9]:
(2.29179606750063, 15.7082039324994)

The eigenvalues are both positive, indicating a local minimum at $(1,1)$.
There are no more possible extremum points, so f has no maximum.

1.1.3 (c)

We are now informed that $f(0,0)=1$. For the 2nd-degree Taylor approximating expanded from $x_{0}=(0,0)$, we need the 1 st-order and 2 nd-order partial derivatives evaluated at $(0,0)$:

$$
\frac{\partial f(0,0)}{\partial x}=0, \frac{\partial f(0,0)}{\partial y}=0, \frac{\partial^{2} f(0,0)}{\partial x^{2}}=6, \frac{\partial^{2} f(0,0)}{\partial y^{2}}=0, \frac{\partial^{2} f(0,0)}{\partial x \partial y}=\frac{\partial^{2} f(0,0)}{\partial y \partial x}=-6
$$

Setting up the approximation:

$$
\begin{gathered}
P_{2}(x, y)=f(0,0)+\frac{\partial f(0,0)}{\partial x}(x-0)+\frac{\partial f(0,0)}{\partial y}(y-0)+\frac{1}{2} \frac{\partial^{2} f(0,0)}{\partial x^{2}}(x-0)^{2}+\frac{1}{2} \frac{\partial^{2} f(0,0)}{\partial y^{2}}(x-0)^{2}+\frac{\partial^{2} f(0,0)}{\partial x \partial y}(x-0)(y-0) \\
=1+0+0+\frac{1}{2} 6 x^{2}+0-6 x y \\
=3 x^{2}-6 x y+1
\end{gathered}
$$

1.2 Exercise 2

A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is given by $f(0)=1$ and $f(x)=\sin (x) / x$ when $x \neq 0$.

1.2.1 (a)

3rd-degree Taylor polynomial of $\sin (x)$ expanded from $x_{0}=0$:
[10]((x-%5Cfrac%7Bx%5E%7B3%7D%7D%7B6%7D+O%5Cleft(x%5E%7B4%7D%5Cright))):

```
sin(x).series(x, 0, 4)
```

So, the Taylor polynomial of degree 3 is $P_{3}(x)=x-\frac{x^{3}}{6}$.
[11]((%5Cleft(-%5Cfrac%7Bx%5E%7B3%7D%7D%7B6%7D+x,-%5Cfrac%7Bx%5E%7B3%7D%7D%7B6%7D+x%5Cright))):

```
P3 = x - x**3 / 6
P3, sin(x).series(x, 0, 4).removeO()
```


1.2.2 (b)

The Taylor expansion (Taylor's limit formula) of $\sin (x)$ is:

$$
\sin (x)=x-\frac{x^{3}}{6}+\varepsilon(x) x^{3}
$$

where $\varepsilon(x)$ is an epsilon function.
We find the following limit value:

$$
\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=\lim _{x \rightarrow 0} \frac{x-\frac{x^{3}}{6}+\varepsilon(x) x^{3}}{x}=\lim _{x \rightarrow 0}\left(1-\frac{x^{2}}{6}+\varepsilon(x) x^{2}\right)=1 .
$$

1.2.3 (c)

According to remark to theorem 3.1.1 in the note, f is continuous in all points in the interval $\mathbb{R}\{0\}$. In (b) we showed that $\sin (x) / x$ converges towards 1 for $x \rightarrow 0$. By the given definition, $f(0)=1$, and thus $f(x) \rightarrow f(0)$ for $x \rightarrow 0$, so f is also continuous in $x=0$.

1.2.4 (d)

Defining the function for $] 0,1]$:
[12]:

```
def f(x):
    return sin(x) / x
f(x)
```

[12]:
$\frac{\sin (x)}{x}$
Computing a decimal approximation of $\int_{0}^{1} f(x) \mathrm{d} x$ using SymPy:
[13](0.946083070367183):

```
integrate(f(x), (x, 0, 1)).evalf()
```


$1.2 .5 \quad$ (e)

We will compute a Riemann sum as an approximation of the area under the graph of f by subdividing the interval $[0,1]$ into $J=30$ subintervals with equal widths of $\Delta x_{j}=1 / 30$ and finding the right-sum. For such a sum, $x_{j}=j / J$ for $j=1, \ldots, J$:
[14](0.943413033821518):

```
j = symbols("j")
delta_xj = 1 / 30
J = 30
xj = j / J
Sum(f(xj) * delta_xj, (j, 1, 30)).evalf()
```

Alternatively, using at for loop:
[15](0.943413033821518):

```
riemann_sum = 0
    N = 30
    for i in range(1, N + 1):
        riemann_sum += sin(i / N) / (i / N) * 1 / N
riemann_sum
```


$1.2 .6 \quad(f)$

Computing $\int_{0}^{1} P_{3}(x) \mathrm{d} x$:
[16]:
integrate(P3, (x, 0, 1)).evalf()
[16]:
0.458333333333333

This approximation of the integral is worse than the approximation using a Riemann sum in the previous question, since a Taylor polynomial of $\sin (x)$ does not approximate f very well. However, it would have been sensible to use:
[17](0.944444444444444):

```
integrate(P3 / x, (x, 0, 1)).evalf()
```


1.3 Exercise 3

Given matrix C_{t} where $t \in \mathbb{R}$:
[18]:

```
t = symbols("t")
Ct = Matrix([[1, 2, 3, 4], [4, 1, 2, 3], [3, 4, 1, 2], [t, 3, 4, 1]])
Ct
```

[18] :
$\left[\begin{array}{llll}1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \\ 3 & 4 & 1 & 2 \\ t & 3 & 4 & 1\end{array}\right]$

1.3.1 (a)

The unitary matrix C_{t}^{*} is the transposed and conjugated matrix. Since $t \in \mathbb{R}$, there are no non-real numbers involved, and the conjugation can be ignored. The unitary matrix is thus the transposed matrix, $C_{t}^{*}=C_{t}^{T}$:
[19]:
Ct_uni $=\mathrm{Ct} . \mathrm{T}$
[19]:
$\left[\begin{array}{llll}1 & 4 & 3 & t \\ 2 & 1 & 4 & 3 \\ 3 & 2 & 1 & 4 \\ 4 & 3 & 2 & 1\end{array}\right]$
C_{t} is a normal matrix if $C_{t} C_{t}^{*}=C_{t}^{*} C_{t}$, so if $C_{t} C_{t}^{T}=C_{t}^{T} C_{t}$, which is solved for t :
[20]:
Ct_uni * Ct
[20]:
$\left[\begin{array}{cccc}t^{2}+26 & 3 t+18 & 4 t+14 & t+22 \\ 3 t+18 & 30 & 24 & 22 \\ 4 t+14 & 24 & 30 & 24 \\ t+22 & 22 & 24 & 30\end{array}\right]$
[21]:
Ct * Ct_uni
[21]:
$\left[\begin{array}{cccc}30 & 24 & 22 & t+22 \\ 24 & 30 & 24 & 4 t+14 \\ 22 & 24 & 30 & 3 t+18 \\ t+22 & 4 t+14 & 3 t+18 & t^{2}+26\end{array}\right]$
[22](%5B%7Bt:2%7D%5D):

```
solve(Eq(Ct * Ct_uni, Ct_uni * Ct))
```

So, only for $t=2$ is C_{t} normal.

1.3.2 (b) and (c)

Defining $A=C_{2}$:
[23]: A = Ct.subs(t, 2)
A
[23]:
$\left[\begin{array}{llll}1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \\ 3 & 4 & 1 & 2 \\ 2 & 3 & 4 & 1\end{array}\right]$

Given eigenvectors:
[24]:

```
v1 = Matrix([1, 1, 1, 1])
v2 = Matrix([1, I, -1, -I])
```

Treating A as a mapping matrix and mapping the eigenvectors:
[25]:
$\mathrm{A} * \mathrm{v} 1, \mathrm{~A} * \mathrm{v} 2$
[25]:
$\left(\left[\begin{array}{l}10 \\ 10 \\ 10 \\ 10\end{array}\right],\left[\begin{array}{c}-2-2 i \\ 2-2 i \\ 2+2 i \\ -2+2 i\end{array}\right]\right)$
From this we read the scaling factors, which are the eigenvalues corresponding to the given eigenvectors, to be $\lambda_{1}=10$ and $\lambda_{2}=-2-2 i$:
[26]:

```
lambda1 = 10
lambda2 = -2 - 2 * I
```

Check:
[27]:

```
A * v1 == lambda1 * v1, A * v2 == simplify(lambda2 * v2)
```

[27]: (True, True)

1.3.3 (d)

Orthogonality is equivalent to an inner product of zero. The inner product of two complex vectors from \mathbb{C}^{4} is a dot product with one vector complex conjugated, $\left\langle v_{1}, v_{2}\right\rangle=v_{1} \cdot \overline{v_{2}}$:
[28](0):

```
v1.dot(v2.conjugate())
```

We conclude that they are orthogonal, $v_{1} \perp v_{2}$.

1.3.4 (e)

The norm is the root of the inner product of a vector with itself, e.g. $\left\|v_{1}\right\|=\sqrt{<v_{1}, v_{1}>}$. Since $v_{1} \in \mathbb{R}^{4}$ we can use the usual dot product without conjugation as the inner product for that one. We compute the norms of both eigenvectors:
[29]: sqrt(v1.dot(v1))
[29] :
2
[30]:
sqrt(v2.dot(v2.conjugate()))
[30]:
As their norms are not 1 , they are not normalized. The list v_{1}, v_{2} is hence orthogonal but not orthonormal.

1.4 Exercise 4

Given quadratic form $q: \mathbb{R}^{2} \rightarrow \mathbb{R}$:
[31]:

```
def q(x1, x2):
    return 2 * x1**2 - 2 * x1 * x2 + 2 * x2**2 - 4 * x1 + 2 * x2 + 2
x1, x2 = symbols("x1,x2")
q(x1, x2)
```

[31]: $2 x_{1}^{2}-2 x_{1} x_{2}-4 x_{1}+2 x_{2}^{2}+2 x_{2}+2$

1.4.1 (a)

For rewriting to matrix form $q\left(x_{1}, x_{2}\right)=x^{T} A x+x^{T} b+c$, then A, b and c can be as follows:
[32]: $A=\operatorname{Matrix}([[2,-1],[-1,2]])$
b = Matrix ([-4, 2])
$c=2$
A, b, c
[32]:

$$
\left(\left[\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right],\left[\begin{array}{c}
-4 \\
2
\end{array}\right], 2\right)
$$

Checking:
[33]:

```
x = Matrix([x1, x2])
simplify(list(x.T * A * x + x.T * b)[0] + c)
```

[33]:
$2 x_{1}^{2}-2 x_{1} x_{2}-4 x_{1}+2 x_{2}^{2}+2 x_{2}+2$
[34](True):

```
simplify(list(x.T * A * x + x.T * b)[0] + c) == q(x1, x2)
```


1.4.2 (b)

We will now reduce the quadratic form q to new form called q_{1} without "mixed double terms" by changing the basis using an orthogonal change-of-basis matrix Q that changes from new to original coordinates, meaning $\tilde{x}=Q^{T} x$. Such Q consists of orthonormalized eigenvectors of A as columns.
[35]:
A. eigenvects()
[35]:
$\left[\left(1,1,\left[\left[\begin{array}{l}1 \\ 1\end{array}\right]\right]\right),\left(3,1,\left[\left[\begin{array}{c}-1 \\ 1\end{array}\right]\right]\right)\right]$
A has the two linearly independent eigenvectors:
[36]:

```
v1 = Matrix([1, 1])
v2 = Matrix([-1, 1])
v1, v2
```

[36]:
$\left(\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{c}-1 \\ 1\end{array}\right]\right)$
Also, A has a corresponding eigenvalue to each eigenvector:
[37](((1,3))):

```
lambda1 = 1
lambda2 = 3
lambda1, lambda2
```

Since A is symmetric, then v_{1} and v_{2} are orthogonal, according to Theorem xx. We normalize them:
[38]:

```
q1 = v1.normalized()
q2 = v2.normalized()
q1, q2
```

[38] :
$\left(\left[\begin{array}{c}\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2}\end{array}\right],\left[\begin{array}{c}-\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2}\end{array}\right]\right)$
A change-of-basis matrix Q is then:
[39]:

```
Q = Matrix.hstack(q1, q2)
Q
```

[39]:
$\left[\begin{array}{cc}\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2}\end{array}\right]$
This can also be found directly by
[40](%5B):

```
Qmat, Lamda = A.diagonalize(normalize=True)
Qmat
```

\left[$$
\begin{array}{cc}
\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\
\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2}
\end{array}
$$\right]
\]

1.4.3 (c)

The new coordinates \tilde{x} are in code denoted by k :
[41]:

```
k1, k2 = symbols("k1 k2")
k = Matrix([k1, k2])
k
```

[41]:
$\left[\begin{array}{l}k_{1} \\ k_{2}\end{array}\right]$
In the new coordinates, the squared terms have coefficients equal to the eigenvalues of A that correspond to the eigenvectors in Q, which were found above, in the same order. We set up the new form q_{1} in the new coordinates, where the original linear terms from $x^{T} b$ are changed to the new basis by performing $\tilde{x}^{T} Q^{T} b$:
[42]:

```
q1 = lambda1 * k1**2 + lambda2 * k2**2 + list(k.T * Q.T * b)[0] + c
q1
```

[42] :
$k_{1}^{2}-\sqrt{2} k_{1}+3 k_{2}^{2}+3 \sqrt{2} k_{2}+2$
Check:
[43]:

```
simplify(list(k.T * Q.T * A * Q * k + k.T * Q.T * b)[0] + c)
```

[43]:
$k_{1}^{2}-\sqrt{2} k_{1}+3 k_{2}^{2}+3 \sqrt{2} k_{2}+2$
Factorizing by completing the square gives us the following suggestions to the constants:
[44](%5B):

```
alpha = 1
gamma = sqrt(2) / 2
beta = 3
delta = -sqrt(2) / 2
alpha, gamma, beta, delta
```

\left(1, \frac{\sqrt{2}}{2}, 3,-\frac{\sqrt{2}}{2}\right)
\]

Setting up the suggested factorized form of q_{1} to see if it fits:
[45]((%5Cleft(k_%7B1%7D-%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%5Cright)%5E%7B2%7D+3%5Cleft(k_%7B2%7D+%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%5Cright)%5E%7B2%7D)):

```
q1_fact = (
    alpha * (k1 - gamma) ** 2
    - alpha * gamma**2
    + beta * (k2 - delta) ** 2
    - beta * delta**2
    + 2
)
q1_fact
```

[46]:

```
expand(q1_fact)
```

[46] :
$k_{1}^{2}-\sqrt{2} k_{1}+3 k_{2}^{2}+3 \sqrt{2} k_{2}+2$
[47](True):

```
expand(q1_fact) == q1
```

We see that the above listed four constants give us the wanted factorized form from the problem text, which is a correct factorization of q_{1}.

1.4.4 (d)

We are informed that q_{1} in the new coordinates has a stationary point at (γ, δ) with the values of the constants found in (c):
[48]:

```
k_statpt = Matrix([gamma, delta])
k_statpt
```

[48] :
$\left[\begin{array}{c}\frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2}\end{array}\right]$
The point written in the original coordinates:
[49]:

```
x_statpt = Q * k_statpt
x_statpt
```

[49]:
$\left[\begin{array}{l}1 \\ 0\end{array}\right]$
The Hessian matrix of q is by definition $H_{q}=2 A$. Since the eigenvalues of A are positive at all points, then the eigenvalues of H_{q} are also positive at all points. Thus, also positive at any stationary points. According to Theorem 5.2.4, if the point $(1,0)$ is a stationary point, then two positive eigenvalues indicate that it is a local minimum.

1.5 Exercise 5

Given parametrization of a solid region, for $u \in[0,1], v \in[0,1], w \in[0, \pi / 2]$:
[50]:

```
def r(u, v, w):
```



```
u, v, w = symbols("u v w")
r(u, v, w)
```

[50]:
$\left[\begin{array}{c}u^{2} v \cos (w) \\ u^{2} v \sin (w) \\ u\end{array}\right]$
We note that r is injective within the interior of the given parameter intervals.

1.5.1 (a)

Plotting the region:
[86]:

```
from sympy.plotting import *
pa = dtuplot.plot3d_parametric_surface(
    *r(u, v, w).subs(v, 1), (u, 0, 1), (w, 0, pi / 2), show=False
)
pb = dtuplot.plot3d_parametric_surface(
    *r(u, v, w).subs(w, pi / 2), (u, 0, 1), (v, 0, 1), show=False
)
pc = dtuplot.plot3d_parametric_surface(
    *r(u, v, w).subs(w, 0), (u, 0, 1), (v, 0, 1), show=False
)
pd = dtuplot.plot3d_parametric_surface(
    *r(u, v, w).subs(u, 1),
    (v, 0, 1),
    (w, 0, pi / 2),
    {"color": "royalblue", "alpha": 0.7},
    show=False
)
(pa + pb + pc + pd).show()
```


The Jacobian matrix:
[51]:

```
Jac_mat = Matrix.hstack(diff(r(u, v, w), u), diff(
        r(u, v, w), v), diff(r(u, v, w), w))
Jac_mat
```

[51]:
$\left[\begin{array}{ccc}2 u v \cos (w) & u^{2} \cos (w) & -u^{2} v \sin (w) \\ 2 u v \sin (w) & u^{2} \sin (w) & u^{2} v \cos (w) \\ 1 & 0 & 0\end{array}\right]$
The Jacobian determinant:
[52]:

```
Jac_det = simplify(Jac_mat.det())
    Jac_det
```

[52]:
$u^{4} v$

1.5.2 (b)

Given vector field:
[53]:

```
x, y, z = symbols("x y z")
V = Matrix([x + exp(y * z), 2 * y - exp(x * z), 3 * z + exp(x * y)])
V
```

[53] :

$$
\left[\begin{array}{c}
x+e^{y z} \\
2 y-e^{x z} \\
3 z+e^{x y}
\end{array}\right]
$$

Given function:
[54](6):

```
f = Lambda(tuple((x, y, z)), diff(V[0], x) + diff(V[1], y) + diff(V[2], z))
f(x, y, z)
```


1.5.3 (c)

We see above that f is a constant and thus continuous function. A continuous function satisfying the conditions (I) and (II) on page 140, are guaranteed to be Riemann integrable, according to the remark after definition 6.3.1.

1.5.4 (d)

Since r is injective and since the Jacobian determinant is non-zero within the interior of the parameter intervals, then we can compute the volume integral of f over the solid region by integrating along the axis-parallel u, v, w region and adjusted by the Jacobian function, which is the absolute value of the Jacobian determinant in this case:
[55]:

```
integrate(f(*r(u, v, w)) * abs(Jac_det), (u, 0, 1), (v, 0, 1), (w, 0, pi / 2))
```

[55]:
$\frac{3 \pi}{10}$

1.6 Exercise 6

Given elevated surface: $G=\{(x, y, h(x, y)) \mid 0 \leq x \leq 2,0 \leq y \leq 1\}$, where h is given as:
[56]:

```
def h(x, y):
        return 2 * x - y + 1
```

$\mathrm{x}, \mathrm{y}=\operatorname{symbols("\mathrm {x}} \mathrm{y}$ ")
h (x, y)
[56]:
$2 x-y+1$

1.6.1 (a)

Parametrisation of G :
[59]:

```
r = Lambda(tuple((u, v)), Matrix([u, v, h(u, v)]))
u, v = symbols("u v")
r(u, v)
```


[59] :

$$
\left[\begin{array}{c}
u \\
v \\
2 u-v+1
\end{array}\right]
$$

wich parameter intervals $u \in[0,2], v \in[0,1]$. This parametrization is injective in the interior. Plot:
[62]:

```
plot3d_parametric_surface(*r(u, v), (u, 0, 2), (v, 0, 1))
```


[62]: <sympy.plotting.plot.Plot at 0x1ade1d2a1e0>
Normal vector to the surface:
[63]: $N=\operatorname{diff}(r(u, v), u) . c r o s s(\operatorname{diff}(r(u, v), v))$ N
[63]:

The Jacobian function in case of surface integrals is the length (norm) of the normal vector:
[64]((%5Csqrt%7B6%7D)):

```
Jac = N.norm()
Jac
```

The area of G is found as a surface integral of the scalar 1 over the surface. Since r is injective and the Jacobian function is non-zero on the interior, then we will carry out the surface integral along u and v and adjust by the Jacobian:
[65]:

```
integrate(Jac, (u, 0, 2), (v, 0, 1))
```

[65]:
$2 \sqrt{6}$

1.6 .2 (b)

The region is now cut in two by a vertical plane through the points $(0,1)$ and $(2,0)$. This cuts the region in the (x, y) plane into two triangles, of which we denote the "lower" triangle by Γ_{1}. Parametrized, where $u \in[0,2], v \in[0,1]$:
[66]:
$\mathrm{s}=\operatorname{Matrix}([\mathrm{u},(1-\mathrm{u} / 2) * \mathrm{v}])$
S
[66]:
$\left[\begin{array}{c}u \\ v\left(1-\frac{u}{2}\right)\end{array}\right]$
The elevated surface above Γ_{1} is denoted G_{1}. A parametrization of G_{1}, where $u \in[0,2], v \in[0,1]$:
[67]:
$r 1=\operatorname{Lambda}(\operatorname{tuple}((u, v)), \operatorname{Matrix}([* s, h(* s)]))$
r1 (u, v)
[67]:
$\left[\begin{array}{c}u \\ v\left(1-\frac{u}{2}\right) \\ 2 u-v\left(1-\frac{u}{2}\right)+1\end{array}\right]$

Plot:
[68]:

```
plot3d_parametric_surface(*r1(u, v), (u, 0, 2), (v, 0, 1))
```


[68]: <sympy.plotting.plot.Plot at 0x1ade4632570>

Normal vector:
[69]: N1 = simplify (diff(r1(u, v), u).cross(diff(r1(u, v), v)))
N1
[69]:
$\left[\begin{array}{l}u-2 \\ 1-\frac{u}{2} \\ 1-\frac{u}{2}\end{array}\right]$
The Jacobian function:
[70]: simplify(N1.norm())
[70]: $\frac{\sqrt{6}|u-2|}{2}$
Since $u \leq 2$, we simplify to:
[71]((-%5Cfrac%7B%5Csqrt%7B6%7D(u-2)%7D%7B2%7D)):

```
Jac1 = -sqrt(6) * (u - 2)/2
Jac1
```


1.6.3 (c)

Given function
[72]((x+y+z-1)):

```
def f(x, y, z):
        return x + y + z - 1
f(x, y, z)
```

Surface integral of f over G_{1} is performed over the parameter region since r_{1} is injective and the Jacobian function non-zero on the interior of Γ_{1} :
[73]: integrate (f(*r1 (u, v)) * Jac1, (u, 0, 2), (v, 0, 1))
[73]: $2 \sqrt{6}$

